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Abstract. The literature contains a variety of different mixes, some
of which have been used in deployed anonymity systems. We explore
their anonymity and message delay properties, and show how to mount
active attacks against them by altering the traffic between the mixes.
We show that if certain mixes are used, such attacks cannot destroy the
anonymity of a particular message completely. We work out the cost of
these attacks in terms of the number of messages the attacker must insert
into the network and the time he must spend. We discuss advantages
and disadvantages of these mixes and the settings in which their use is
appropriate. Finally, we look at dummy traffic and SG mixes as other
promising ways of protecting against the attacks, point out potential
weaknesses in existing designs, and suggest improvements.

1 Introduction

Many modern anonymity systems are based on mixes. Chaum first introduced
the concept in 1981 [2], and since then researchers and developers have described
many mix variations, eg. [8, 9, 11]. These have different aims and approaches,
yet we still fail to understand the performance and anonymity tradeoffs between
them.

In fact, some of the mixes used in well-known fielded systems such as Mix-
master [3, 12] are mentioned only briefly or not at all in the literature. We aim
to start closing this gap by enumerating and exploring a variety of mix architec-
tures. In particular, we consider the extent to which the mixes are vulnerable to
active attacks such as the n− 1 attack.

More specifically, an attacker targeting a specific message going into a mix
can manipulate the batch of messages entering that mix so the only message
unknown to him in the batch is the target message [3, 8]. This manipulation
may involve delaying or dropping most or all other incoming messages (a trickle
attack), or flooding the batch with attacker messages (a flooding attack). We
call these attacks or combinations of them blending attacks.

We provide a rigorous analysis and comparison of several properties of each
mix variant, including anonymity, latency, and resistance to blending attacks. We
also give intuition and guidelines about which environments and circumstances
are most suitable for each mix variant.
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2 Blending Attack Taxonomy

In the past, many anonymity systems have been concerned with protecting their
users against passive adversaries, either global or local, usually citing the n−1 or
the blending attack as a vulnerability, with (quoting [1]) “no general applicable
method to prevent this attack”. In this paper we discuss ways of reducing this
vulnerability.

Here we consider a global active adversary who is not only able to see the
traffic on all the links, but also to delay (remove) and insert arbitrarily many
messages into the system in a short (constant) time. These are reasonable as-
sumptions — methods of logging per-packet data on high bandwidth links exist,
as does the possibility of building fast hardware to insert or delay messages.
We further assume our attacker can send messages from many different source
addresses; indeed, infrastructures to ensure sender authentication have proved
difficult to build. More importantly, source authentication on links would triv-
ially defeat the very anonymity free-route mix networks are intended to protect.
The active attacker’s threat comes from his power to log and manipulate mes-
sages on the links.

Note that the global active attacker can be viewed as a combination of two
separate attackers: one who can only insert messages (global inserting attacker)
and one who can only delay messages (global delaying attacker).

It is well known that the ability to insert or delay messages may allow the
attacker to determine, for instance, the recipient of a particular message origi-
nating from a sender. We illustrate this in the case of a single threshold n mix1.
The attack, commonly referred to as the n− 1 attack, proceeds as follows: The
attacker observes the target message leaving the sender heading towards the mix
and delays it. He now starts sending messages into the mix until it fires. As soon
as the mix fires, he stops all other messages from entering the mix and sends in
the target message along with n − 1 of his own messages. After the mix fires,
he can recognize each of the n − 1 messages when they leave the mix and can
therefore determine the destination of the target message.

We now consider the properties of this attack before going on to examine
how a similar arrangement could work on other mixes.

First of all, we note that the attack is exact — that is, it provides the ad-
versary with the ability to determine the receiver of a particular message with
certainty 1 (the anonymity of a message passing through the mix is 0)2. We also
note that this attack does not depend on the rest of the mix network; that is,
the attacker has enough power to always isolate and trace a particular message.
We call such an attack certain.

We classify mixes into the following categories of vulnerability to blending
attacks.

1 The same attack can be used against a mix cascade by mounting it against the first mix, or
against a mix network by repeating it ` (the number of mixes in the path) times.

2 In this case, we can use either the information theoretic definition of [13] or the usual
anonymity set definition.



– If no blending attack can reduce the anonymity of any message at all, the
mix is strongly resistant to active attacks.

– If no blending attack can reduce the anonymity of any message below a
constant k, then the mix has blending attack anonymity k.

– If the attacker can always reduce the anonymity of a message arbitrarily, but
never to 0, the mix is vulnerable to non-exact, uncertain blending attacks.

– If the attacker can always reduce the anonymity of a message to 0, but may
need to spend an arbitrary amount of resources (time/messages) to do so,
the mix is vulnerable to exact, uncertain attacks.

– If the attacker is always able to reduce the anonymity of a message to 0 in
a finite amount of resources, it is vulnerable to exact certain attacks.

Although it may appear that the “vulnerability” of the mixes goes up as
we go down the list, this is not necessarily the case – the cost of the attack is
important to consider as well. For example, suppose the anonymity of a message
going through Mix 1 under active attack is proportional to the inverse of the
cube of the number of messages expended in the attack. This mix can be seen
as “more vulnerable” than Mix 2 which is always compromised by 106 attacker
messages. Note that Mix 1 is vulnerable only to non-exact blending attacks,
while the Mix 2 is vulnerable to exact certain attacks.

We now proceed to analyze and categorize several mixes. We suggest their
blending attack cost functions (both of time and number of messages) where
necessary.

3 Simple Mixes

In this section we describe various mixes divided according to their flushing
algorithms. In particular we set out for each mix type: mix parameters, what
the flushing algorithm is, the delay on messages in normal operations (i.e., when
not under attack), the minimum and maximum anonymity provided against
a purely passive adversary, analysis of the blending attacks on the mix, and
finally a discussion of the adversaries capable of performing blending attacks.
This section describes simple mixes, in which all of the messages in the mix are
sent each time it fires. The more complex pool mixes are discussed in the next
section.

In describing the different mix flushing algorithms and working out their
properties, we make several assumptions:

– The mixes take a constant time to fire (send messages out).
– The mixes have limited physical memory and so can only contain a finite

number of messages. Further, they have finite bandwidth, so can only receive
a certain number of messages in a given amount of time.

– Mixes prevent message replays.3

3 Actually, flooding to overflow replay caches is a closely related problem — for example,
Mixmaster 2.0 [12] expired old entries in the replay cache when it had too many, providing



– Messages may or may not arrive at a uniform rate.
– In calculating the minimum and maximum anonymity we assume the global

passive adversary. The vulnerability to the active attacker is described sep-
arately.

– When we talk about anonymity, we mean sender anonymity. Similar ideas
can be applied to receiver anonymity as well.

3.1 Threshold Mix

Parameters: n, threshold.

Flushing Algorithm: When the mix collects n messages, it fires (delivers all n).

Message Delay: The minimum delay is ε (the target message arrives when there
are n− 1 messages already in the mix). The maximum delay can be infinite (the
target arrives at a mix and no more ever arrive). Assuming a constant rate of
arrival of messages r, we can calculate the mean delay: n−1

2r .

Anonymity: The anonymity set against a passive adversary has n elements. We
assume that all the messages in the batch are from different senders (and go to
different receivers).

Blending Attack Behaviour: The attack proceeds as outlined in Section 2 and
is usually referred to as the n − 1 or the flooding attack. It takes ε time as
inserting the required messages and the (usually two) firings of the mix take a
constant time. The attack takes a minimum of n−1 (the attacker waits until the
mix is empty, forwards the target message to the mix along with n− 1 attacker
messages to flush it out) and a maximum of 2n− 2 messages (the attacker does
not wait for the mix to become empty).

Adversaries: The above attack seemingly requires both the global delaying at-
tacker capabilities and the global inserting attacker capabilities. However, this
is not necessarily so. If the global inserting attacker is able to insert n − 1 of
his own messages between each of the “good” messages going into a mix, he
effectively mounts an n− 1 attack on each of them.

Another possible attack scenario is when an attacker owns a mix in a free
route mix network. He has the capability to delay all the messages going through
this mix until the conditions are “just right”, i.e. the next mix contains n − 1
of the attacker’s messages and will fire as soon as the target message reaches it.
Thus, he has the capability to attack the next mix in the route of each of the
messages going through the mix he controls. (As a result, if the attacker owns
all the mixes but one, he is able to compromise anonymity of any message.)

a window of attack for a flooding adversary. But since [4] shows the feasibility of a free-
route network that securely protects against replays until a periodic key rotation event (after
which the history can be forgotten), we think our assumption is reasonable; we will ignore
replays and related issues for the rest of this paper.



3.2 Timed Mix

Parameters: t, period.

Flushing Algorithm: The mix fires (flushes all messages) every t seconds.

Message Delay: The minimum delay is ε, which occurs if the message arrives
just before the mix is due to fire. The maximum delay is t− ε, which is the case
when the message arrives just after. The mean delay is t

2 .

Anonymity: The minimum anonymity set is 0 — no messages arrive during the
entire time period. The maximum anonymity set is theoretically infinite, but in
practice is limited by the capacity of the mix. The mean anonymity set (assuming
a rate of arrival of r msgs/s) is rt.

Note that the threshold and timed mixes are in some sense dual. If the goal of
the anonymity system is to guarantee anonymity at the expense of fast message
delivery, threshold mixes are good. (This is the scenario of a spy in a hostile
country — if the anonymity is compromised, the spy is caught.) On the other
hand, if timeliness of message delivery is crucial and anonymity is a bonus, the
timed mix is ideal. Notice that if the messages are assumed to arrive at a constant
rate, the properties of these mixes are exactly equivalent.

Blending Attack Behaviour: The attack is exact and certain and proceeds as
follows: The adversary delays the target message for a maximum of time t until
the mix fires. He then delivers the target message and blocks all other incoming
messages. After another t seconds the mix fires again producing the target mes-
sage on its own. This takes a maximum of 2t − ε and a minimum of ε seconds
(when the mix was empty and about to be fire), and 0 messages. The attack is
usually referred to as the trickle attack.

Adversaries: This attack does not require any insertion of messages, so the
global delaying attacker is sufficient. We also note that this “attack” can happen
naturally in low traffic conditions, so a dishonest mix may be able to attack the
next hop of a message simply by holding it until the next hop is empty and
about to fire.

3.3 Threshold Or Timed Mix

Parameters: n, threshold; t, period.

Flushing Algorithm: The mix fires (flushes all messages) every t seconds or when
n messages accumulate in the mix.

Message Delay: The maximum message delay is t− ε, the minimum is ε.

Anonymity: The minimum anonymity set is 0 – no messages arrive during the
entire time period. The maximum anonymity is n.



Blending Attack Behaviour: This design gives the worst case of threshold and
timed mixes (and thus still exact and certain). The adversary can choose to
perform a trickle attack, a flood attack, or a mixture of the two depending on
whether he prefers to wait or send messages. It can be performed in a minimum
of 0 messages in somewhere between 0 and 2t − ε seconds or with a maximum
of 2(n− 1) messages, in ε seconds.

Adversaries: This attack can be performed by either the global inserting or the
global delaying attacker.

3.4 Threshold And Timed Mix

Parameters: n, threshold; t, period.

Flushing Algorithm: A mix fires (flushes all messages) every t seconds but only
when at least n messages have accumulated in the mix.

Message Delay: The minimum delay is ε, and there is no maximum delay.

Anonymity: The minimum anonymity of this mix is n. The maximum anonymity
is in theory infinite, but is limited in practice by the number of messages the
mix can hold.

Blending Attack Behaviour: The n−1 attack is still exact and uses a combination
of the attacks on the threshold and the timed mixes. It takes a maximum of 2t−ε
and a minimum of ε seconds; and a maximum of 2(n − 1) and a minimum of
n− 1 messages.

Adversaries: It is clear that to mount an attack on this mix, the attacker has to
have the capability both to delay and to insert messages.

4 Pool Mixes

Not only are all the attacks described in the previous section exact and certain,
but they are also low-cost. We now examine pool mixes, which give the adversary
only an uncertain attack and substantially increase the cost.

4.1 Threshold Pool Mix

Parameters: n, threshold; f , pool.

Flushing Algorithm: The mix fires when n+ f messages accumulate in the mix.
A pool of f messages, chosen uniformly at random from all the messages, is
retained in the mix. (Consider these messages as feedback into the mix.) The
other n are forwarded on. Note that the threshold is the threshold of messages
that must be received to fire again during ongoing operation. For pool mixes this
is distinct from the ‘threshold’ of messages to fire when the mix is completely
empty, e.g., n+ f for the current mix type.



Message Delay: The minimum delay is ε, the maximum delay is infinite — until
n new messages arrive, the mix does not fire. Note, however, that even if there is
a constant flow of messages and the mix is firing periodically, there is still a small
but non-zero probability of the message remaining in the mix for an arbitrarily
long time. The mean delay is 1 + f

n+f rounds. If the messages arrive at a rate of
r per second, then the average delay is (1 + f

n+f )nr seconds.

Anonymity: Here we have to resort to the information theoretic definition of
anonymity described in [13] rather than the standard set-based definition, since
the probabilities of the senders (receivers) sending (receiving) the message are
unequal. Note also that the anonymity of the message going through a mix
depends on the entire history of events that have happened in this mix. Thus,
we achieve the maximum anonymity Amax when all of the messages that have
ever passed through the mix come from different senders. Serjantov and Danezis
carried out this analysis in [13].

Amax = −
(

1− f

n

)
log (n+ f) +

f

n
log f

The concept of minimum anonymity in pool mixes is slightly more elusive. In
the threshold mix case we assumed that all the messages in the batch come from
different senders. So, regardless of previous senders, the minimum anonymity
of a threshold pool mix is at least n, and therefore no worse than that of a
corresponding threshold mix. We could assume that all the other messages may
have come from the same sender and thus provide no anonymity, but this would
be overly pessimistic — the entire history of the mix is unlikely to consist of
messages from just one sender. Thus the minimum anonymity of a threshold n
pool mix is likely higher than that of a simple threshold n mix.

Blending Attack Behaviour: In general, the blending attack has two phases:
flushing the mix so that no good messages remain inside it, then forwarding in
the target message and flushing it out onto the network. With simple mixes,
one flush was sufficient for each phase. With pool mixes, this is no longer the
case. Furthermore, there is now a small but non-zero probability that a given
message (e.g. the target message) remains in the mix for an arbitrary length of
time. Intuitively, the attack ceases to be certain. It proceeds as follows:

The attacker delays the target message, fills up the pool mix and flushes it.
If j of the attacker messages don’t come out, he knows that f − j good messages
remain inside the pool mix. He now delays all the other incoming good messages
and tries to flush the remaining good messages out of the mix (he can distinguish
them as they come out). Of course, this takes more messages than to flush out
a threshold mix (see below for details), but the attack is still exact (if/when
the attacker succeeds in getting all the messages to leave the mix, he knows it).
When all good messages have been flushed, he just sends in the target message,
and flushes the mix as before until the target message comes out. Because the
attacker is not guaranteed to flush out the mix completely or to flush out the
target message, the attack is uncertain.



Analysis: Flushing out the mix: after r rounds, the probability that a particular
message that was in the mix at round 0 is still in the mix by round r is(

f

n+ f

)r
If there were N good messages in the mix initially, the expected number left

after r flushes is N times the above.
Alternately, we might consider the chance that all N good messages have left

the mix by round r:

(
1−

(
f

n+ f

)r)N
The number of good messages in the mix at the beginning of the attack can

vary between f and n+ f − 1.

Example 1 Consider a pool mix with a threshold of 100 and a pool of 60 mes-
sages. The average delay of a message through this mix is 1.6 rounds. Assuming
the attacker targets a mix with 60 messages, the expected number of good mes-
sages remaining in the mix falls below 1 after 5 rounds or 500 attacker messages.
Similarly, the chance that all 60 messages have left the pool goes above 50% after
5 rounds, and reaches 99% after 9 rounds.

Thus, the use of a pool mix in an anonymity system not only makes the n−1
attack uncertain, but also more expensive in terms of attacker messages at the
cost of increasing the average delay of a message passing through the mix.

4.2 Timed Pool Mix

Parameters: t, period; f , pool; (0, threshold).

Flushing Algorithm: The mix fires every t seconds. A pool of f messages chosen
uniformly at random is retained in the mix. The others are forwarded on. If f
or fewer messages are in the mix, it does not fire. (Thus, strictly speaking, this
is a threshold and timed pool mix, for which the threshold is 0.)

Message Delay: The minimum message delay is ε, and there is no maximum
delay (if no messages arrive, the messages that are in the pool will never leave
the mix). Like in the case of the threshold pool mix, there is again a small but
non-zero probability that any given message could remain in the mix for an
arbitrarily long time even if there are messages flowing through the mix.



Anonymity: The timed nature of this mix allows an arbitrarily large number
(only limited by the memory and bandwidth capacity of the mix) of messages
to be mixed together. If we assume a constant rate r of message arrival, the
anonymity provided by this mix can be calculated in just the same way as for
the threshold case; but we leave this calculation for future work.

Alternatively, the anonymity of a message going through this mix can be
calculated from the history of the mix — a record of the operation of the mix
ever since it was started. Like in the threshold case, a mix’s history includes the
senders of each message and also the number of messages that got mixed together
in each batch (and, potentially, a whole host of other features). Of course, in
practice, a record of only the last few rounds gives a good approximation.

The minimum anonymity of a timed pool f mix is clearly smaller than that
of a threshold pool f mix (unless the threshold is 1). If the pool is small relative
to the batch size, then the bulk of the anonymity comes from mixing the tar-
get message with the batch of incoming messages, not from mixing it with the
messages in the pool. Because the timed mix does not always have this batch
of messages for mixing the target message, its minimum anonymity should be
considered to be very much worse than that of the threshold pool mix unless a
large pool is maintained.

Assuming reasonable parameters, [13] shows that the anonymity contribution
of pool messages is quantifiably greater than that of messages in a new batch.
That is, increasing the pool size has a larger effect on anonymity than increasing
the batch size. Of course, increasing the pool size also increases the message
delay — thus weakening one of the potential advantages of having a timed mix.

Blending Attack Behaviour: Two flavours of blending attack are possible on this
mix. The adversary has no control over when the mix fires, but he can choose to
add many or just a few messages to each batch. (He prevents all other messages
from reaching the mix).

By adding as many messages as possible in one round, he maximizes the
probability that after one flush only the attacker messages will be left in the
pool. He knows that he has succeeded if f of his messages do not come out with
the flush. This approach is very inefficient in terms of the number of messages
added by the attacker (b) since the probability of flushing the mix by this method
is f2

b+f (supposing there were f good messages in the mix initially).4 However,
this aims to flush the good messages out of the mix in one round, and therefore
a maximum of t seconds. Thus the entire attack can be executed in less than 2t
seconds with an arbitrarily high probability of success.

Alternatively, the attacker can add just one message to each round for many
rounds. This is very efficient in the number of messages b (indeed, this attack is
much more efficient than the one on the threshold pool mix in terms of messages,

but clearly not in terms of time). The probability of flushing the mix is f
(

f
f+1

)b
,

4 As previously mentioned, in practice there is an upper limit on b due to the finite memory
capacity and/or bandwidth of the mix.



but this approach delays all the messages to the mix by tb seconds, which is highly
observable to the users of the anonymity system.

The attacker can choose either or a combination of these approaches, based
on whether he can send out many messages or delay messages to a mix for a
long time.

4.3 Timed Dynamic-Pool Mix (Cottrell Mix)

Parameters: t, period; fmin minimum pool; frac, fraction of messages to be sent;
(n, threshold)

Flushing Algorithm: The mix fires every t seconds, provided there are n+ fmin

messages in the mix; however, instead of sending n messages (as in a timed-
and-threshold constant-pool mix), the mix sends the greater of 1 and bm ∗ fracc
messages, and retains the rest in the pool, where m + fmin is the number of
messages in the mix (m ≥ n). If n = 1, this is the mix that has been used in the
Mixmaster remailer system for years. We use the term ‘Cottrell mix’ for n = 1
and ‘timed dynamic-pool mix’ for the more general case when n might be greater
than one.

We have called constant-pool mixes simply ‘pool mix’ up to now for con-
sistency with the previous literature. Hereafter, ‘pool mix’ will refer to either
constant or dynamic pool mixes.

When messages arrive at a constant rate of 1 per period, Cottrell mixes
are equivalent to both timed pool mixes and threshold-1 constant-pool mixes.
Specifically, if the rate r of message arrival is 1/t, the mix will forward 1 message
in every period and retain fmin in the pool. For a general Cottrell mix, if the
messages arrive at a constant rate of n ∗ frac/t and dn ∗ frace = n ∗ frac, then
this is equivalent to a constant-pool mix with threshold of fmin + n(1− frac).

Message Delay: Like the other pool mixes, the minimum delay is ε, and there is
no upper limit on the delay. The mean delay depends on the future rate of arrival
of messages into the mix; it is at least as high as that of a timed constant-pool
mix and typically higher.

Anonymity: The dynamic-pool mix has identical minimum and maximum ano-
nymity properties compared to a timed constant-pool mix. We could similarly
use a log of the mix’s activity to calculate the anonymity of a message passing
through it (although the calculation would be slightly different). Also, we note
that the anonymity provided by the mix would be higher than that provided
by either a timed or threshold constant-pool mix: As the number of messages
in the mix goes up, frac keeps the chance of the message remaining in the mix
constant, whereas it decreases in the case of the timed constant-pool mix. While
the chance of a message remaining in a threshold constant-pool mix is also con-
stant for each flush, increased message rate means more frequent flushing, thus
reducing the chance of a message remaining in the constant-pool threshold mix
per unit time.



Blending Attack Behaviour: The introduction of the dynamic parameter frac
has several new consequences compared to the timed constant-pool mix.

Firstly, the maximum probability of flushing the mix of good messages in
one flush is frac. Therefore there is no possibility of flushing the mix with high
probability in one flush: the first of the two blending attacks on timed constant-
pool mixes is blocked. As already noted, it is similarly more resistant to flooding
than a constant-pool threshold mix.

Secondly, the attacker has to find out how many messages are in the mix. Of
course, the number of good messages in the mix is easy to calculate from the
number of messages that come out.

Finally, the number of messages inside the pool mix may be arbitrarily high
and cannot be reduced to below fmin in one round. Therefore, if we wish to send
a message that is harder to track, we should send it at a time of higher traffic —
thereby increasing the cost (in terms of messages or time) of attempted attacks
on it.5

Thus timed dynamic-pool mixes require the attacker to delay all the traffic
to the mix for a substantial number of rounds, and therefore for a substantial
time.

Example 2 A Cottrell mix with a pool of 60 messages and fraction of 6
10 requires

5 rounds for the expected number of good messages remaining in the mix to fall
below 1. If the period is 5 minutes, the overall flushing time is 25 mins. 500
messages will be used in the first part of the attack.

This example shows that the protection this mix provides against blending
attacks is still weak. Indeed, the probability of a successful attack is proportional
to 1

frack
where k is the number of rounds. Ideally we would like a mix for which

the anonymity does not go to 0 even as the cost of the attack goes up.
We would also be happier with a mix where the probability of a successful

attack is proportional to 1
P (k) where P is a polynomial of a small degree.

We note that the minimum anonymity of the Cottrell mix is still very much
worse than that of the threshold constant-pool mix (where the threshold size
is much larger than the pool size). Therefore, we propose a larger threshold for
the timed dynamic-pool mix, to improve its minimum anonymity properties. We
believe this modification will not have adverse effects on the blending attack
properties, although will slightly decrease the efficiency of this mix.

5 More on Resisting Blending Attacks

5.1 Resisting Exact Attacks

All of the mixes presented above are vulnerable to exact attacks. In other words,
the attacker is always able to find out if his attack is successful, and possibly
expend more resources to try again if not.
5 Unfortunately, an attacker capable of arbitrary message insertions, as we have been assum-

ing, will make it hard to determine times of higher legitimate traffic.



However, we could do better. If we make it hard to determine the number
of good messages in the mix, it will be harder for the attacker to flush the mix
as he will not know how many messages he needs to get rid of. This is easily
possible by choosing the number of messages to flush from a binomial probability
distribution (flipping a biased coin once for each message to decide whether it is
to be flushed or not). The weight of the coin is chosen by an appropriate function
of the number of messages in the mix. Thus, it would take the attacker several
rounds to establish with any confidence the number of good messages in the mix
initially, and he can never be exactly sure of that figure (unless he has the whole
history).

While introducing randomness appears to be a promising direction, note that
it would not increase the cost of the attack significantly (if at all). Thus, we shall
not pursue it further.

5.2 Resisting Blending vs Verification

The tools that we give honest mixes to protect against these blending attacks
are precisely the tools that dishonest mixes use to launch them. Uncertainty
comes from not letting observers know when a given message might leave the
mix; inexactness comes from not letting observers know how many messages are
currently inside the mix. This flexibility allows a mix to prevent the adversary
from learning the details of message flow, but at the same time it allows a
compromised mix to manipulate message flow, for example by delaying a message
until it’s ready to launch a trickle attack on the downstream hop.

Many basic mix verification schemes, such as that proposed in [2] where
senders observe the batches exiting a mix to confirm it processed their mes-
sages, require schemes where the messages come out with the next mix flush.
More complex robustness schemes [9] enforce timely message processing if the
adversary does not own a threshold of participating mixes. The receipt and wit-
ness scheme of [5] works because a mix loses reputation if it hasn’t obtained a
receipt from the next hop within the allowed timeframe. All of these systems
are designed to ensure that messages will leave each mix predictably. Yet more
verification schemes that work in a system with pool mixes are described in [7,
10]. There the authors propose a commitment scheme which ensures that the
mix commits to a decision before he receives the target message, and his actions
are verifiable by the sender of the target message.

In some topologies, such as free route mix networks, a widespread delaying
attack is difficult to perform because the adversary must control all mixes that
are sending messages to the target mix. In this case we may gain more by al-
lowing mixes to protect against blending attacks than we lose by permitting
compromised nodes to manipulate messages. At the other extreme, in a cascade
topology, a single compromised mix has absolute control over the downstream
message batch. In this case verification of correct processing is critical, to pre-
vent wholescale (unobservable!) anonymity compromise. Methods to detect an
attack afterwards, e.g. by checking for successful delivery of test messages at the
end of the cascade [6], can help detect misbehaving mixes — but this technique



only works for cascade topologies, and it assumes that the cascade head cannot
distinguish test messages. As we design new protocols and batching approaches,
we must consider this tradeoff between protection from blending attacks and
verifiability.

5.3 Cover Traffic

Cover traffic is another promising protection against blending attacks. Consider
a simple cover traffic policy, suggested originally by Lance Cottrell: at each flush
one dummy is put out onto the network. The dummy message generated by
the mix looks like a normal message. Assume that like the current Mixmaster
dummy generation algorithm, it has by default a constant length of 4 hops, and
it ends at a mix rather than at a receiver.6

This dummy policy still allows an attacker to flush the mix free of good
messages and be certain about it. However, once the target message is inserted
into the mix, at every round at least one message unknown to the attacker comes
out. Naturally, when two messages come out, the attacker knows that the target
message was one of those, but he does not know which one. If the attacker finishes
here, he has reduced the anonymity of the message to 1 (that is, two possible
receivers). However, he can do better. Assuming a free-route mix network, he
can keep tracking both messages (and all the messages that result when these
pass through more mixes) until he can detect that one message has gone to a
recipient. That is the target message since all the dummy messages end in a mix.
This attack is exact, but much more expensive than anything we have described
previously.

We can make the adversary’s job harder by making the mix choose its route
length for the dummies from a uniform distribution rather than always choosing
4 by default. We can get further protection by allowing mixes to send cover traffic
to the users. However, providing complete protection with this approach is very
hard. Each mix must know all the users in the system: if a mix only delivers
dummies to a subset of the users, an adversary can distinguish with better than
even probability between a dummy and a legitimate message.

Note that constant rate dummy policies do not affect the blending attack
properties provided by the mixes themselves. Constant dummies simply magnify
the scale of the attack without changing the properties. For example, even with
the above cover traffic policy (a dummy added at each flush), a threshold mix
network can be attacked in ε time (but a very large number of messages). We
can provide stronger protection by adding a variable number of dummies to each
batch — say, by choosing from a geometric distribution (flip a weighted coin:
if it comes up heads, add a dummy and flip again). Some Mixmaster remailers
have begun adopting a similar approach. We leave its analysis to future work.

6 The current Mixmaster dummy policy suffers also from the fact that there is no policy — a
user or operator must manually decide to send each dummy. Some people have automated
the process with periodic cron scripts, but we strongly recommend a coordinated network-
wide policy that all users and mixes follow.



5.4 Making Messages Unrecognizable

Link encryption offers some limited protection against traffic analysis. Encrypted
links between honest nodes prevent an adversary from recognizing even his own
messages, thus making it harder to flood mixes and watch where outgoing mes-
sages go. However, since the adversary performing the flooding attack can choose
the next destination of each message, he may still be able to recognize his mes-
sages. At the extreme, he can direct all his chaff messages at the same next mix,
so any other message will still stand out. A good link padding scheme may be
able to further frustrate him, but much more research remains.

Babel [8] introduces inter-mix detours, a scheme where mix nodes can choose
to rewrap a message and send it through a few randomly chosen new hops —
so even the sender cannot be sure of recognizing his message as it leaves the
mix. This approach could help complicate blending attacks, but also introduces
reliability risks; we leave its analysis for future work.

6 Limitations of Stop-and-Go Mixes

While active attacks have been widely cited in the literature and methods of
protection against them have been suggested informally, most of these have not
been rigorously analysed or evaluated [3, 8, 10, 11].

We now concentrate our attention on one particular proposal — Stop-and-Go
Mixes [11]. The authors outline several techniques that could be used to protect
mix systems against active attacks like the ones considered in this work.

The first is a scheme for an anonymity system based on a mix cascade that
requires authentication. This is based on a stronger assumption — that the
attacker cannot mount a distributed n − 1 attack where the hostile messages
come from different users. Unfortunately, it seems very hard to reuse this idea in
free route networks, since there is no centralized input location at which we can
do authentication; compromised mixes could claim to have done authentication
on traffic they instead generate themselves.

The second scheme, Stop-and-Go mixes (SG mixes), involves the sender es-
timating a time window during which the message is allowed to arrive at each of
the mixes making up the route of the message. If the message arrives during that
time period it will be forwarded on; otherwise it will be discarded. Therefore the
attacker’s ability to delay messages is much more limited, so active attacks are
harder.

The attack is uncertain, and the authors argue that the probability of exe-
cuting the attack successfully is very low.

However, the scheme relies on the users being able to accurately calculate
a security parameter that depends on their estimate of the rate of arrival of
messages to the mixes that the target message will go through at the time it
will travel through them. In other words, the users need to be able to predict
the traffic levels in the system in the future to remain anonymous. This is likely
to be exploited by the attacker (the exact details depend, of course, on how



the security parameter is calculated). Furthermore, an active attacker is able to
arbitrarily affect the levels of traffic in the mixes which the target message goes
through. It is conceivable that combining SG mixes with reputation systems as
in [5] or [6] might help.

Thus, we defer the evaluation of SG mixes to future work as the precise
details of parts of the protocol crucial to the security of the system have not yet
been worked out.

7 Conclusion

We present a set of mixes and examine their anonymity, message delay and
blending attack properties. In particular, we suggest that it is useful to partition
the mixes into certain categories of vulnerability but emphasize that the cost
and worst case attack scenario are important qualities to consider.

Simple timed mixes seem best for anonymity infrastructures that require low
latency. On the other hand, if we do not need guaranteed low latency, adding
a pool to the mix can significantly improve anonymity. Allowing the pool to
process a fraction of waiting messages (above a certain threshold) each round
further improves robustness against flooding attacks designed to flush out a
target message.

Although we show the mixes to be rather vulnerable to active attacks, some
avenues still have hope. The first of these is verification schemes. We also touch
on cover traffic, a more widely used solution. We assess the cover traffic pol-
icy used in Mixmaster, point out weaknesses, and discuss some approaches to
strengthening its dummy policy.

The paper can also be treated as a tutorial on the different styles of mixes and
as a recommendation to the Mixmaster implementors to alter the cover traffic
policy and introduce thresholds into the mixes.

Average Anonymity

Delay Min. Max

Threshold n−1
2r n n

Timed t
2 0 mix capacity

Simple
Thresh. or Time 0 n
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(
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)
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n log f
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